Inhibition of mutant IDH1 decreases D-2-HG levels without affecting tumorigenic properties of chondrosarcoma cell lines
نویسندگان
چکیده
Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are found in a subset of benign and malignant cartilage tumors, gliomas and leukaemias. The mutant enzyme causes the production of D-2-hydroxyglutarate (D-2-HG), affecting CpG island and histone methylation. While mutations in IDH1/2 are early events in benign cartilage tumors, we evaluated whether these mutations play a role in malignant chondrosarcomas. Compared to IDH1/2 wildtype cell lines, chondrosarcoma cell lines harboring an endogenous IDH1 (n=3) or IDH2 mutation (n=2) showed up to a 100-fold increase in intracellular and extracellular D-2-HG levels. Specific inhibition of mutant IDH1 using AGI-5198 decreased levels of D-2-HG in a dose dependent manner. After 72 hours of treatment one out of three mutant IDH1 cell lines showed a moderate decrease in viability , while D-2-HG levels decreased >90%. Likewise, prolonged treatment (up to 20 passages) did not affect proliferation and migration. Furthermore, global gene expression, CpG island methylation as well as histone H3K4, -9, and -27 trimethylation levels remained unchanged. Thus, while IDH1/2 mutations cause enchondroma, malignant progression towards central chondrosarcoma renders chondrosarcoma growth independent of these mutations. Thus, monotherapy based on inhibition of mutant IDH1 appears insufficient for treatment of inoperable or metastasized chondrosarcoma patients.
منابع مشابه
Treatment with a Small Molecule Mutant IDH1 Inhibitor Suppresses Tumorigenic Activity and Decreases Production of the Oncometabolite 2-Hydroxyglutarate in Human Chondrosarcoma Cells
Chondrosarcomas are malignant bone tumors that produce cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2) were recently described in several cancers including chondrosarcomas. The IDH1 inhibitor AGI-5198 abrogates the ability of mutant IDH1 to produce the oncometabolite D-2 hydroxyglutarate (D-2HG) in gliomas. We sought to determine if treatment with AGI-5198 would sim...
متن کاملThe oncometabolite D-2-hydroxyglutarate induced by mutant IDH1 or -2 blocks osteoblast differentiation in vitro and in vivo
Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are found in a somatic mosaic fashion in patients with multiple enchondromas. Enchondromas are benign cartilaginous tumors arising in the medulla of bone. The mutant IDH1/2 causes elevated levels of D-2-hydroxyglutarate (D-2-HG). Mesenchymal stem cells (MSC) are the precursor of the osteoblastic, chondrogenic and adipocytic lineage and we ...
متن کاملD-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth
Cancer-associated isocitrate dehydrogenase (IDH) 1 and 2 mutations gain a new activity of reducing α-KG to produce D-2-hydroxyglutarate (D-2-HG), which is proposed to function as an oncometabolite by inhibiting α-KG dependent dioxygenases. We investigated the function of D-2-HG in tumorigenesis using IDH1 and IDH2 mutant cancer cell lines. Inhibition of D-2-HG production either by specific dele...
متن کاملCan-14-0772-t 3317..3331
Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxida...
متن کاملCan-14-0772-t 1..15
Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxida...
متن کامل